Уравнение прямой в пространстве, проходящей

Уравнение прямой в пространстве, проходящей

через две точки.

Если на прямой в пространстве отметить две произвольные точки M1(x1, y1, z1) и M2(x2, y2, z2), то координаты этих точек должны удовлетворять полученному выше уравнению прямой:

.

Кроме того, для точки М1 можно записать:

.

Решая совместно эти уравнения, получим:

.

Это уравнение прямой, проходящей через две точки в пространстве.

Общие уравнения прямой в пространстве.

Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей.

Как было рассмотрено выше, плоскость в векторной форме может быть задана уравнением:

× + D = 0, где

- нормаль плоскости; - радиус- вектор произвольной точки плоскости.

Пусть в пространстве заданы две плоскости: × + D1 = 0 и × + D2 = 0, векторы нормали имеют координаты Уравнение прямой в пространстве, проходящей: (A1, B1, C1), (A2, B2, C2); (x, y, z).

Тогда общие уравнения прямой в векторной форме:

Общие уравнения прямой в координатной форме:

Практическая задача часто состоит в приведении уравнений прямых в общем виде к каноническому виду.

Для этого надо найти произвольную точку прямой и числа m, n, p.

При этом направляющий вектор прямой может быть найден как векторное произведение векторов нормали к заданным плоскостям.

Пример. Найти каноническое уравнение, если прямая задана в виде:

Для нахождения произвольной точки прямой, примем ее координату х = 0, а затем подставим это значение в заданную систему уравнений.

, т.е. А(0, 2, 1).

Находим компоненты направляющего вектора прямой Уравнение прямой в пространстве, проходящей.

Тогда канонические уравнения прямой:

Пример. Привести к каноническому виду уравнение прямой, заданное в виде:

Для нахождения произвольной точки прямой, являющейся линией пересечения указанных выше плоскостей, примем z = 0. Тогда:

;

2x – 9x – 7 = 0;

x = -1; y = 3;

Получаем: A(-1; 3; 0).

Направляющий вектор прямой: .

Итого:

Угол между плоскостями.


j1

j 0

Угол между двумя плоскостями в пространстве j связан с углом между нормалями к этим плоскостям j1 соотношением: j = j1 или j = 1800 - j1, т.е.

cosj = ±cosj1.

Определим угол j1. Известно, что плоскости могут быть заданы соотношениями:

, где

(A1, B1, C1), (A2, B2, C2). Угол между векторами нормали найдем из их скалярного произведения:

.

Таким образом, угол между плоскостями находится Уравнение прямой в пространстве, проходящей по формуле:

Выбор знака косинуса зависит от того, какой угол между плоскостями следует найти – острый, или смежный с ним тупой.


documentafatpbl.html
documentafatwlt.html
documentafaudwb.html
documentafaulgj.html
documentafausqr.html
Документ Уравнение прямой в пространстве, проходящей